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Abstract-A first strain gradient theory of thermoelasticity is formulated employing amethod due to Mindlin. The
basic equations for linear dynamical thermoelasticity for infinitesimal motion are obtained and discussed. Wave
propagation is considered and an example of a spherical thermal inclusion in an infinite body is solved and the
corresponding displacement field and the component of stresses, couple stresses, and double stresses are
obtained.

I. INTRODUCTION

The linearized couple-stress theories have become an active field of research in recent years.
These theories take into account couple and double stresses which are neglected in classical theory
ofelasticity. The first study of mediawith couple-stresses is due to E. and F. Cosserat [1]. The modern
derivation of the Cosserat equations has been given by Truesdell and Toupin [2], Toupin [3], and
Mindlin and Tiersten [4]. In a subsequent paper Mindlin [5] obtained a more general theory taking into
account all the terms of the gradient of the strain tensor in contrast to the previous works where only
the gradient of curl of displacement were considered. This generalization had been indicated briefly
by Toupin [3]. A derivation of the basic equations based on conservation principles was given
recently by Mindlin and Eshel [6]. A general thermodynamical treatment of strain gradient theories
was given by Green and Rivlin [7].

In the present work afirst strain gradient theory of thermoelasticity for infinitesimal deformation is
derived. The derivation follows the method of Mindlin [5] and Mindlin and Eshel [6]. The
fundamental equations of linear dynamical thermoelasticity are obtained and discussed. Wave
propagation is considered and the dispersion relations of plane waves are calculated. The
presentation is concluded with an example of a spherical thermal inclusion in an infinite body.

2. GOVERNING EQUATIONS

In this section the principle of conservation of momentum, angular momentum and energy are
employed in the derivation of the equations of the first strain gradient theory of thermoelasticity.

Let t; and mi be the components of force and couple, per unit area, acting on the surface S of a
body occupying a volume V; and let Ii and C be the component of force and couple per unit mass in
V, then the principles of balance of linear and angular momentum are expressed by

(2.1)

(2.2)

where u is the displacement vector.
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Introducing the stress tensor Til and couple stress tensor !-til> such that

(2.3)

Substitution of (2.3) into (2.1) and (2.2) and applications of divergence theorem lead to the local
conservation equations,

(2.4)

(2.5)

We write Tlk ::::: T(jkl + Tfjkl and evaluate Tlikj from (2.5) and substitute it into (2.4), the result is

(2.6)

where !-t ff is the deviatoric part of !-tij.

For the helmholtz free energy density, !/!, extending the assumption of Mindlin and Eshel (6], we
consider

(2.7)

where

(j::::: T+To

T= temperature.

To "" temperature of natural state

stress tensor

€ii = hU,.j +Ui.,) €ii::::: Strain

K il =! eiikUk.1i =gradient of rotation (Kil ::::: 0)

Kiik = ~(Uk.ij + Ui.Jk + Uj.k;) = K iki ::::: Kkij ::::: Kkji

Symmetric part of second gradient of displacement.

Furthermore introducing

11 - iJO ::::: specific entropy

_ alii-
Tii::::: P-

a
::::: Til

€ij

ji,j ::::: Paaf == deviator of couple stress (jiJi 0)
Kii

~ alii ~ ~ ~ d bl
!-tijk == P-- = !-tiki::::: !-tkii == !-tkii = OU e stress tensor,

aKijk

so that
a a

p¢ == - pTJ8 + TiiEij + jiiiKii + jIijkKiik.

(2.8)

(2.9)

(2.10)

(2.1l)

(2.12)

(2.13)

(2.14)

(2.15)
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We now adopt the following principle of conservation of energy

where

e '" internal energy density'" r/J - (JT/

qi '" heat flux vector

h '" heat source distribution.
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(2.16)

(2.17)

(2.18)

(2.19)

With (2.3), divergence theorem and chain rule, the surface integral in (2.16) may be converted into a
volume integral. Employing (2.6) after some rearrangements we find

Finally inserting (2.17) and (2.15) in the left side of (2.20) and equating coefficients of like kinematic
variables on both side of the equation, we find

T(jk) = Tjk - /Lijk,i

D _
/L;j '" /Lij

pOr, = qi,i + ph.

(2.21)

(2.22)

(2.23)

Upon substituting (2.21) and (2.22) into (2.6) we obtain the basic equations of motion of the
generalized elastic body

(2.24)

This coupled with the heat transfer equation (2.23) gives the general equations of the first strain
gradient theory of thermoelasticity.

3, LINEAR CONSTITUTIVE EQUATIONS

For a homogeneous centrosymmetric isotropic medium, the most general form of a positive
definite helmholtz free energy (2.7) which leads to linear constitutive equations is

- pof3 2 I - - -
por/J = r/Jo - pOT/o T - 2To T - 'YEiiT + '2 AEiiEjj + /LEijEij +2d1KijK;j

(3.1)

Now from (2.11)-(2.14) the specific entropy and constitutive equations may be easily obtained
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1/= 1/0+ (3T/To+ yfu/po

D -- - - =
/.Lpq =4d,Kpq +4d2 Kqp + fepq,K'JJ

flpw = ii,CK",Opq + K;,pOq, + K;,qO,p) + 2ii2 K pw

+ *IK;j(opqeij, + 0weijp + O,pe,jq).

(3.2)

(3.3)

(3.4)

(3.S)

When (3.2)-(3.S) together with (2.21) and (2.22) are inserted in (2.6) and f,j. K;j and K;jk are
replaced by their expressions in terms of U;, we find the displacement equation of motion

where

1,2 = (3ii, +2ii2 )/(A +2/.L)

1/ = (3d l + ii, +2ii2 - I)/3/.L.

(3.7)

(3.8)

The positive definiteness of the Helmholtz free energy. ;j; imposes the following restrictions on
the coefficients [6,8],

ii 2 > 0,

31.. + 2/.L > O. - d, < d2 < d,
Sii l + 2ii 2 > o. sf < 6(d, - ( 2)(Sii l +2ii 2) (3.9)

which imply

(3 2: 0, Y 2: 0

1/>0. 1/>0. (3.10)

Using the expression (3.2) for the entropy in (2.23) gives the heat transfer equation in terms of
temperature

plJ({3T/To + yEu/",.) = kV2 T + ph

where the Fourier law of conduction is employed. i.e.

qi = kT, o.

Assuming that T <a; To the equation (3.11) may be linearized

p{3T + (yTo)V . u= kV2 T +ph.

(3.11)

(3.12)

Note that in the infinitesimal motion theory p = po. Equations (3.6) and (3.12) are the basic
equations of the first strain gradient theory of thermoelasticity.

Introducing the scalar potential </J and the vector potential A such that

u = V</J + V x A. (3.13)
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The heat transfer equation (3.12) now becomes

The equation of motion (3.6) decomposes into two equations in terms of potentials

where we have assumed
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(3.14)

(3.15)

(3.16)

(3.17)

It is interesting to note that the field equation for the vector potential is decoupled from those of
the scalar potential and heat transfer.

4. THERMOELASTIC WAVES

The governing equations of a linear, isotropic, homogeneous first gradient thermoelastic solid
was obtained in the previous section. In the present section the dispersion of thermoelastic waves
is considered. Rewriting the basic equations

where

C/(l

C/O

l t
2V2)V2 cf> - YI T + f,p = J>

I/V2)V2A+ fA +4c:= A

(4.1)

(4.2)

(4.3)

(4.4)

are respectively, the velocities of irrotational and equivoluminal isothermal classical elastic
waves, and

yt=yfp, a kfp{3, 11 = yTolp, Q = hl{3. (4.5)

For vanishing body force, body couple and heat source, combining (4.1) and (4.3) we see that
both displacement potential cf> and temperature satisfy the following sixth order equation.

(4.6)

The coupling of equivoluminal waves with temperature field will in general occur through the
boundary conditions. However the field equation for A is uncoupled and, therefore, in the study
of wave propagation in an infinite medium there is no need to give any solutions of (4.2). We
therefore turn our attention to the coupled equations (4.1) and (4.3) or alternatively (4.6) for cf>
and T.
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A plane harmonic wave has the general form

{<f>, T} = {<f> *, T*} exp {i (k . x wt)} (4.7)

where k is the wave vector and w is the frequency.
Upon substituting (4.7) into (4.6) we obtain the following dispersion relation,

(4.8)

For 11 = 0 the above reduces to the classical dispersion relation of thermoelasticity (see, e.g.
Erigen [8]) and for 11 == 0 we find the dispersion relation of irrotational waves of the first strain
gradient theory of Mindlin [5].

5. SPHERICAL THERMAL INCLUSION IN AN INFINITE BODY

We conclude our presentation by solving an example. Let us consider an infinite body of first
gradient elastic media with a spherical thermal inclusion of radius a. The temperature within the
sphere is assumed to be a constant Tl and the rest of the body is kept at zero temperature. We
would like to find the displacement field as well as the stress, couple stress, and double stress
distributions which are produced due to such a discontinuous temperature distribution.

In the stationary state and in the absence of body force the equations of thermoelasticity
(4.1)-(4.3) simply become

In the present example the temperature field is given by

T = T,H(a - r)

(5.1)

(5.2)

where H is the Heaviside unit step function.
Due to the symmetry of temperature distribution <f> is only a function of r. The general

solution of (5.1) in this case is easily obtained by the Green function method, i.e.

where

<f>(r) (5.3)

r >rl
rl >r

(5.4)

(5.5)

Upon substituting (5.2) into (5.3) and carrying out the corresponding integration we find,

<f> = - Y~~o{[-1/6r2-I/+ ;2 + exp{-a/I l}sinh r/Il (a 1/ + 1;)]H(a - r)

+ [~: + exp {-rIll} (- a;/ cosh alll + 1/ sinh all,) ]H(r- a)l (5.6)
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The only nonzero component of the displacement field is

= - y~~O {[-~ + exp {- a/II} C~r cosh r/1 1 - :2 sinh rlL) ]H(a - r)

[
a3 2 3' / (II)}+ -3rT-exp{-r!lI}(-aL coshalL+L smha 11) Gr+~ H(r-a).
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(5.7)

The corresponding nonzero terms of the strain tensor, gradient of rotation tensor and second
gradient of displacement tensor are

(5.8)

(5.9)

where subscript 1, 2, 3 corresponds to r, e, 1> spherical coordinates system. Note that all the
components of gradient of rotation are zero since the rotation itself is identically zero due to the
l:xistance of displacement scalar potential.

The corresprnding nonzero components of the stress deviatoric part of couple stress and
double stress are

(5.10)

(5.11)

= _ 3- (a 2
Ur+2 aUr 2Ur) 2- a

2
ur

j.L1I1- al -a2 --a --y + a2-a'r r r r r-

(5.12)

Direct substitution of (5.7) into (5.10)-(5.12) gives the explicit form of the stresses.
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